Quantum Physics, Course KFY/7KVAF $WS^{'}2020/2021$

Seminar 1: Wavefunctions, vector spaces, linear operators

- 1. Which of the following functions can be wave functions corresponding to the stationary state of a particle in an interval $x \in (-\infty, \infty)$?
 - a) $\psi(x) = x$ for $x \ge 0$ and $\psi(x) = x$ for x < 0,
 - b) $\psi(x) = x^2$,
 - c) $\psi(x) = e^{-|x|}$,
 - d) $\psi(x) = e^{-x}$,
 - e) $\psi(x) = \cos x$,
 - f) $\psi(x) = \sin|x|$,

 - g) $\psi(x) = e^{-x^2}$,
 - h) $\psi(x) = 1$ for $-1 \le x \le 1$ and $\psi(x) = 0$ for x < -1 and x > 1,
 - i) $\psi(x) = x(a-x)$ for $0 \le x \le a$ and $\psi(x) = 0$ for x < 0 and x > a.
- 2. Can the following functions describe an identical quantum state?
 - a) $\psi(x)$ and $c\psi(x)$, where c is real constant,
 - b) $\psi(x)$ and $e^{if(x)}\psi(x)$, where f(x) is real function.
- 3. Check the linear dependency/independency of vectors and functions
 - a) $\vec{a} = (3, 2, 7); \vec{b} = (1, 1, 1); \vec{c} = (2, 0, 3),$
 - b) $\vec{a} = (3, 2, 0); \vec{b} = (1, 1, 1); \vec{c} = (5, 4, 2),$
- c) $\vec{a} = (1.5, 2)$ a $\vec{b} = (2.5, 3)$ and if independency is proved, use both vectors for expression of third one $\vec{x} = (4,1)$ as linear combination,
- d) $\vec{a}=(3,4,5); \vec{b}=(-6,7,0); \vec{c}=(8,-9,1)$ and use these vectors for expression of fourth one $\vec{x} = (23, -19, 6),$

 - e) $\psi_1(x) = x^2$; $\psi_2(x) = x$; $\psi_3(x) = \frac{1}{x}$; $\psi_4(x) = 1$, f) $\psi_1(x) = 1 + x$; $\psi_2(x) = x + x^2$; $\psi_3(x) = x^2 + x^3$; $\psi_4(x) = x^3 + 1$.
- 4. Check the scalar product axioms for the following operations

 - a) $(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{N} x_i y_i$ defined in \mathbb{R}^N for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$, b) $(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{N} x_i y_i^*$ defined in \mathbb{C}^N for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^N$, c) $\langle \psi, \varphi \rangle = \int_a^b \psi(x) \varphi(x) dx$ for all functions $\psi(x), \varphi(x) \in L^{\mathbb{R}}(a, b)$,
 - d) $\langle \psi, \varphi \rangle = \int_a^b \psi^*(x) \varphi(x) dx$ for all functions $\psi(x), \varphi(x) \in L^{\mathbb{C}}(a, b)$.
- 5. Proof the orthogonality of the following systems of functions in Hilbert space L_2
 - a) $\{e^{inx}\}_{n=-\infty}^{\infty}$ in $[0,2\pi]$,
 - b) $\{1, \cos(x), \sin(x), \cos(2x), \sin(2x), ...\}$ in $(-\pi, \pi)$,
- c) Legendre polynomials in (-1,1) given by $L_0(x) = 1$, $L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$ (try to express first four and check selected combinations).
- 6. Replace the following classical mechanical expressions with their corresponding quantum-mechanical
 - a) kinetic energy $T = \frac{1}{2}mv^2$ in three-dimensional space,
 - b) $\boldsymbol{p} = m\boldsymbol{v}$, a three-dimensional cartesian vector,
 - c) y-component of angular momentum $L_y = zp_x xp_z$.
- 7. Calculate
 - a) $(\hat{A} \hat{B})(\hat{A} + \hat{B})$,

 - b) \hat{A}^2 corresponding to operator $\hat{A} = \frac{d}{dx} + x$, c) \hat{A}^3 corresponding to operator $\hat{A} = \frac{d}{dx} + \frac{1}{x}$, d) and compare operators $(x\frac{d}{dx})^2$ and $(\frac{d}{dx}x)^2$.