Quantum Physics, Course KFY/7KVAF _{WS 2020/2021} Seminar 3: Simple quantum systems

1. Show, that the total momentum operator $\hat{P} = \sum_i \hat{p}_i$ for a set of particles is conserved (constant) if no external forces are acting.

2. Show the probability current (flux) for

- a) free particle described by plane wave $\psi(x) = Ae^{Et \sqrt{2mEx}/(i\hbar)}$, b) wave function $\psi(x) = Ae^{Et \sqrt{2mEx}/(i\hbar)} + Be^{Et + \sqrt{2mEx}/(i\hbar)}$.

3. One-particle wave function is $\psi(x,0) = Ne^{-x^2/(2a^2) + ik_0x}$ at time t = 0 (real numbers a and k_0). Determine (normalization) coefficient N, typical size of particle localisation and the probability current.

4. Calculate the expected value of coordinate $\langle \hat{x} \rangle$ and momentum $\langle \hat{p} \rangle$ of the particle from the previous exercise.

5. A rigid body described by moment of inertia J is rotating around free axis z (rigid rotator). Find its eigenstates (wave functions) and eigenenergies. [Hint: Consider polar coordinates (r, φ) . You should obtain Hamiltonian $\hat{H} = \frac{\hat{L}_z^2}{2J}$ with $\hat{L}_z = -i\hbar \frac{\partial}{\partial \varphi}$.]

6. Determine the expected values of a) the orbital angular momentum \hat{L}_z and b) the square of the orbital angular momentum \hat{L}_z^2 from the previous exercise.

7. Find the reflection and transmission coefficients for the one-dimensional potential step if the particles are incident from the right and the potential is defined as V(x) = 0 for x < 0 and $V(x) = v_0$ for x > 0.