Quantum Physics, Course KFY/7KVAF $_{\rm WS\ 2020/2021}$ Seminar 4: Angular momentum

- 1. Proof that the orbital angular momentum operator $\hat{L} = \hat{r} \times \hat{p}$ is Hermitian operator.
- Show that $\hat{L} \times \hat{L} = i\hbar \hat{L}$. 2.

3. Show that the square of the magnitude of the orbital angular momentum $\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$ commute with all \hat{L}_j (j = x, y, z).

- 4. Calculate commutator of the following operators:
 - a) components of $\hat{\boldsymbol{L}}$ and position $\hat{\boldsymbol{x}}$,
 - b) components of \hat{L} and a momentum \hat{p}_x operator.

5. Examine the operators below along with an appropriate given function. Determine if the given function is simultaneously an eigenfunction of both operators. Is this what you expected?

- a) \hat{L}_z , $\hat{\boldsymbol{L}}^2$ with function $Y_{00}(\theta, \phi) = \frac{1}{\sqrt{4\pi}}$, b) \hat{L}_x , \hat{L}_z with function $Y_{00}(\theta, \phi) = \frac{1}{\sqrt{4\pi}}$ c) \hat{L}_z , \hat{L}^2 with function $Y_{10}(\theta, \phi) = \sqrt{\frac{3}{4\pi}} \cos \theta$,

d) \hat{L}_x , \hat{L}_z with function $Y_{10}(\theta, \phi) = \sqrt{\frac{3}{4\pi}} \cos \theta$. [Hint: You can use the general angular momentum relationships:

 $\hat{J}^2 Y_{jm} = \hbar^2 (j(j+1)) Y_{jm} \text{ and } J_z Y_{jm} = \hbar m Y_{jm} \text{ together with the information} \\ \hat{L}_x Y_{l,m} = \frac{1}{2} (\hat{L}_+ Y_{l,m} + \hat{L}_- Y_{l,m}) = \frac{1}{2} \sqrt{l(l+1) - m(m+1)} \hbar Y_{l,m+1} + \frac{1}{2} \sqrt{l(l+1) - m(m-1)} \hbar Y_{l,m-1}]$