Quantum Physics, Course KFY/7KVAF $_{ m WS\ 2020/2021}$ Seminar 2: Properties of linear operators

- 1. Calculate commutator
 - a) $[\hat{A}\hat{B},\hat{C}]$ of three operators \hat{A},\hat{B},\hat{C} using $[\hat{A},\hat{C}]$ a $[\hat{B},\hat{C}]$, b) $\left[\frac{\mathrm{d}}{\mathrm{d}x}, x\right],$ c) of position \hat{x} and momentum \hat{p} operators, d) $[\hat{x} - \hat{p}, \hat{p} - \hat{x}],$ e) $[\hat{x}\hat{p},\hat{x}],$ f) $\begin{bmatrix} \partial \\ \partial \\ \partial \\ x \end{bmatrix}$, f(x, y, z), where f is complex function, g) $[\hat{x}, \Delta]$.
- **2.** Which of the following \hat{A} operators are linear $(u \equiv u(x)$ is complex function)? a) $\hat{A}u = \lambda u$, where λ is complex constant,
 - b) $\hat{A}u = u^*$, c) $\hat{A}u = u^2$ d) $\hat{A}u = \frac{\mathrm{d}u}{\mathrm{d}x}$ e) $\hat{A}u = \frac{1}{u},$ f) $\hat{A}u = \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + 3u^2.$

3. Find adjoint operators to operators a) - e and check possible self-adjoint operators (Hermitian operator):

- a) $\hat{A} = x$, b) $\hat{A} = \frac{\mathrm{d}}{\mathrm{d}x},$ c) $\hat{A} = f(x), f(x)$ is complex function, d) $\hat{A} = f(x), f(x)$ is real function, e) $\hat{A} = c, c$ is complex number.
- 4. Check if the following operators are Hermitian
 - a) the momentum operator $\hat{p} = -ih\nabla$,
 - b) the Laplace operator Δ .
- 5. Find the eigenvalues and corresponding eigenvectors of the following matrices:
 - a) $\begin{pmatrix} -1 & 2 \\ 2 & 2 \end{pmatrix}$ $\frac{1}{2}$ b) $\begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$ c) two-level Hamiltonian $\hat{H} = \begin{pmatrix} E_0 & A \\ A & E_0 \end{pmatrix}, E_0, A \in \mathbb{R}.$
- 6. Find the eigenvalues and corresponding eigenvectors of the following operators:
 - a) $\frac{\mathrm{d}}{\mathrm{d}x}$, b) $i(\frac{d}{dx})$,

 - c) $x + \frac{d}{dx}$, d) -i($\frac{d}{d\varphi}$), where φ is rotation by angle around the axis z (spherical coordinate).

7. Match the eigenfunctions in right column to their operators in left column. What is the eigenvalue for each eigenfunction?

i.
$$(1-x^2)\frac{d^2}{dx^2} - x\frac{d}{dx}$$
 a. $4x^4 - 12x^2 + 3$
ii. $\frac{d^2}{dx^2}$ b. $5x^4$
iii. $x\frac{d}{dx}$ c. $e^{3x} + e^{-3x}$
iv. $\frac{d^2}{dx^2} - 2x\frac{d}{dx}$ d. $x^2 - 4x + 2$
v. $x\frac{d^2}{dx^2} + (1-x)\frac{d}{dx}$ e. $4x^3 - 3x$