Quantum Physics, Course KFY/7KVAF WS 2022/2023 Theme 5: Hydrogen atom, spin

1. Show that the first few hydrogenic atomic wavefunctions are orthonormal; in other words, calculate $\langle \psi_{100}|\psi_{100}\rangle, \langle \psi_{200}|\psi_{200}\rangle, \langle \psi_{100}|\psi_{200}\rangle$ etc. using $\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-\rho}, \psi_{200} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} (2-\rho)e^{-\rho/2}$ etc., where $\rho = Zr/a_0, Z$ is nuclear charge and a_0 is the Bohr radius.

2. Calculate probability that a hydrogen 1s electron will be found within a distance $2a_0$ from the nucleus.

3. Calculate averages $\langle r \rangle$, $\langle r^2 \rangle$ and most probable distance r_0 from the nucleus for the ground-state electron (1s state).

4. Prove that the average value of r in the 1s and 2s states for a hydrogen-like atom is $3a_0/2Z$ and $6a_0/Z$, respectively.

5. What is the degeneracy of each of the hydrogen atomic energy levels (neglecting spin-orbit interaction)?

6. Determine hydrogenic wavefunctions and energies if the movement of both an electron and nuclei is assumed (use the results of fixed nuclei approximation).

7. Consider a hydrogen atom and deuterium. Determine the ratio of electron and proton masses from its spectra if the ratio of Balmer series wavelength (corresponding to identical quantum numbers) is $\rho = 1.000272$.

- 8. Proof that Pauli matrices σ_x , σ_y and σ_z obey relations a) $[\sigma_x, \sigma_y] = 2i\sigma_z$, $[\sigma_y, \sigma_z] = 2i\sigma_x$, $[\sigma_z, \sigma_x] = 2i\sigma_y$ and b) $\sigma_x^2 = 1$, $\sigma_y^2 = 1$ a $\sigma_z^2 = 1$.
- 9. Calculate
 - a) anticommutator of Pauli matrices,
 - b) the eigenvalues and corresponding eigenvectors of the Pauli matrix σ_x and
 - c) proof the validity of equation $\sigma_x \sigma_y \sigma_z = i\mathbb{1}$.