Quantum Physics, Course KFY/7KVAF WS 2022/2023 Theme 7: Variational method

1. Find stationary points of the function $f(x, y, z) = 2x^2 + y^2 + 2z - xy - xz$.

2. Find constrained local extrema of the function $f(x,y) = x^2 + y^2$ with the constrain g(x,y) = 3x - y + 1 = 0. [Hint: find local extrema of Lagrangian function $L(x,y,\lambda) = f(x,y) + \lambda \cdot g(x,y)$.]

3. Proof the validity for the functional $E(\psi) = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \geq E_0$ (for the non-degenerate discrete spectrum), where $|\psi\rangle$ is eigenfunction of Hamiltonian \hat{H} and E_0 is lowest eigenvalue. [Hint: for non-degenerate discrete energy spectrum is $\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle$, n = 0, 1, 2, ... and wavefunction is therefore possible to write $|\psi\rangle = \sum_{n=0}^{\infty} c_n |\psi_n\rangle$.]

4. Show using the variational method that at least one bound state is available for the particle in a one-dimensional potential well $V(x) = -V_0$ for $-a \le x \le a$ and V(x) = 0 pro $a \ge |x|$. [Hint: Use trial wavefunction containing one parameter α , $\psi(x) = \frac{1}{\sqrt{2\alpha}} \exp(-\frac{|x|}{2\alpha})$, and show the average total energy (Hamiltonian) $\langle \hat{H} \rangle = \langle \hat{T} \rangle + \langle \hat{V} \rangle$ is negative.]

5. Calculate the ground state of a hydrogen atom using a trial function of the form $\psi(r) = e^{-\alpha r}$.

6. Suppose a one-parameter (Z_e) trial wavefunction to represent the electronic structure of a twoelectron ion of nuclear charge Z of the form $\psi(r_1, r_2) = \frac{Z_e^3}{\pi a_0^3} \exp(\frac{-Z_e r_1}{a_0}) \exp(\frac{-Z_e r_2}{a_0})$. Suppose that you were also lucky enough to be given the variational integral W (instead of asking you to derive it) as $W(Z_e) = (Z_e^2 - 2ZZ_e + \frac{5}{8}Z_e)\frac{e^2}{a_0}$. a) Find the optimum value of the variational parameter Z_e and the corresponding W (for an arbitrary nuclear charge Z). b) Using your optimized expression for W, calculate the estimated total energy of each of two-electron atoms/ions for Z = 1 - 8 and compare to experimental values (e.g., using relative error):

Z = 1	H^{-}	-14.35 eV
Z=2	He	$-78.98~\mathrm{eV}$
Z = 3	Li^+	$-198.02~\mathrm{eV}$
Z = 4	Be^{2+}	$-371.5~\mathrm{eV}$
Z = 5	B^{3+}	$-599.3 \mathrm{~eV}$
Z = 6	C^{4+}	-881.6 eV
Z = 7	N^{5+}	-1218.3 eV
Z = 8	O^{6+}	-1609.5 eV